CBCS 2020

CHEMISTRY

MODEL QUESTION PAPER FOR ODD SEMESTER EXAMINATION 2020 MULTIPLE CHOICE (MCQ)

UNIT-I Chemical Bonding

- 1. Schottky defect in crystals is observed when
 - (a) Unequal number of cations and anions are missing from the lattice
 - (b) Equal number of cations and anions are missing from the lattice
 - (c) An ion leaves its normal site and occupies an interstitial site
 - (d) Density of the crystal is increased
- 2. At zero kelvin, most the ionic crystal possess
 - (a) Frenkel defect
 - (b) Schottky defect
 - (c) Metal excess defect
 - (d) No defect
- 3. In stoichiometric defects, the ratio of positive and negative ions as indicated by chemical formula of the chemical:
 - (a) Decreases
 - (b) Increases
 - (c) Remains same
 - (d) Cannot be predicted
- 4. In the Schottky defect
 - (a) Cations are missing from the lattice sites and occupy the interstitial sites
 - (b) Equal number of cations and anions are missing
 - (c) Anions are missing and electrons are present in their place
 - (d) Equal number of extra cations and electrons are present in the interstitial sites
- 5. As a result of Schottky defect
 - (a) There is no effect on density
 - (b) Density of the crystal increases
 - (c) Density of the crystal decreases
 - (d) Any of the above three can happen
- 6. Schottky defect is likely to be found in:
 - (a) AgI
 - (b) NaCl
 - (c) ZnS
 - (d) ZnO

- 7. Which of the following is correct?
 - (a) Schottky defect lowers the density
 - (b) Frenkel defect increases the dielectric constant of the crystal
 - (c) Stoichiometric defect makes the crystal good conductor
 - (d) All the three
- 8. Frenkel defect is generally observed in
 - (a) AgBr
 - (b) AgI
 - (c) ZnS
 - (d) All of these
- 9. Frenkel defect is found in crystals in which the radius ratio is:
 - (a) Low
 - (b) 1:3
 - (c) 1:5
 - (d) Slightly less than unity
- 10. As a result of Frenkel defect,
 - (a) There is no effect on density
 - (b) There is no effect on conductivity
 - (c) There is no effect on dielectric constant
 - (d) There is no effect on all there of the above

UNIT-II Chemical Bonding-III

- 1. Which of the following theory provides good explanation about the paramagnetic behaviour of oxygen?
 - (a) resonance theory
 - (b) VSEPR theory
 - (c) Molecular Orbital Theory
 - (d) Valence Bond Theory
- 2. Which of the following species is paramagnetic?
 - (a) O_2
 - (b) N₂
 - (c) H_2
 - (d) O_2^-
- 3. In which set o molecules are all the species paramagnetic
 - (a) B_2, O_2, N
 - (b) B_2 , O_2 , NO
 - (c) B_2, F_2, O_2
 - (d) B_2 , O_2 , Li_2

- 4. In the formation of N₂ molecule according to Molecular Orbital Theory the outermost electron goes to (a) πMO (b) sp hybrid orbital (c) σ MO
- 5. In the molecular orbital diagram of for O_2^+ ion the highest occupied orbital is (a) σ MO
 - (b) π MO
 - (c) π^* MO

(d) 2p orbital

- (d) σ^* MO
- 6. The molecular orbital configuration of B₂ molecule is
 - (a) $(\sigma 1s)^2 (\sigma^*1s)^2 (\sigma 2s)^2 (\sigma^*2s)^2 (\pi 2p_x)^1 (\pi 2p_y)^1$
- (b) $(\sigma 1s)^2 (\sigma^*1s)^2 (\sigma 2s)^2 (\sigma^*2s)^2 (\sigma 2p_z)^2$ (c) $(\sigma 1s)^2 (\sigma^*1s)^2 (\sigma 2s)^2 (\sigma^*2s)^2 (\pi 2p_x)^2$ (d) $(\sigma 1s)^2 (\sigma^*1s)^2 (\sigma 2s)^2 (\sigma^*2s)^2 (\pi 2p_x)^1 (\pi 2p_y)^1$
- 7. How many bonds (bond order) does B_2 have?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
- 8. Which of the following molecular orbital has the lowest energy?
 - (a) $\sigma 2p_z$
 - (b) $\sigma *2p_z$
 - (c) $\pi * 2p_z$
 - (d) $\pi * 2p_y$
- 9. For a homonuclear diatomic molecule the energy of σ 2s orbital is
 - (a) $> \sigma^* 2s$ orbital
 - (b) $< \sigma^* 2s$ orbital
 - (c) $> \sigma^*$ 1s orbital
 - (d) Both (b) and (c) are correct
- 10. Which of the following statements is correct about N₂ molecule?
 - (a) It has a bond order of 3
 - (b) The number of unpaired electrons present in it is zero and hence it is diamagnetic
 - (c) The order of filling of MOs is $\pi(2p_x) = \pi(2p_y)$, $\sigma(2p_z)$
 - (d) All the above three statements are correct

UNIT-III Chemistry of s and p block elements

- 1. Caro's acid is a. H₂SO₄ b. H2SO₅ c. $H_2S_2O_6$ d. $H_2S_2O_8$ 2. Silicon carbide is used as a. a solvent b. a dehydrating agent c. an abrasive d. a catalyst 3. The number and type of bonds between two cabon atoms in CaC_2 are: a. only one π bond b. one σ and half π bond c. one σ and one π bond d. one σ and two π bond 4. Electrolysis of fused NaH liberates H₂ at: a. anode b. cathode c. cathode and anode both
- d. none of these electrodes5. Which of the following is a pseudohalogen ?
 - a. IF₇
 - b. ICl₂
 - c. $(CN)_2$
 - $d. I_3$
- 6. Which of the following is not a pseudohalide ion?
 - a. CNO
 - b. CN
 - c. SCN
 - d. S^{2-}
- 7. Which of the following shows inert pair effect
 - a. Boron
 - b. Carbon
 - c. Silicon
 - d. Tin

	a.	methane
	b.	ethane
	c.	ethane
	d.	ethyne
9. Which o	f th	e following carbide ion Is called methanide?
	a.	C^{4-}
	b.	C_2^{2-}
	c.	(c)C ₃ ⁴⁻ C ⁴⁺
	d.	C 4+
10. Example of covalent carbides are		
	a.	CaC ₂ and CH ₄
		B ₄ C and Al ₄ C ₃
	c.	Al_4C_3 and Ag_2C_2
	d.	SiC and B ₄ C
	e.	
UNIT-IV		
1. the symmetry point group of BF ₃ is:		
	a.	D2d
		D3h
	c.	D2h
	d.	C2V
2. which of the following can act both as Bronsted acid and Bronsted base?		
	a.	Na2CO3
	b.	OH-
	c.	HCO ₃
	d.	NH3
3. NH ₄ ⁺ is	5	
4		a conjugate acid
0.0	a. b.	a conjugate base
	c.	neither an acid nor a base
14.	d.	both an acid and a base
4 . a compound having the formula , $NH_2 - CH_2 - COOH$ may behave :		
	a.	only as an acid

b. only as a base

c. both as an acid nd a base

d. (d)neither as an acid nor a base

8. Calciumcarbide(CaC_2), when decomposed by water, produces:

5. The strongest conjugate base is		
(a) NO ₃ ⁻ (b) Cl ⁻ (c) SO ₄ ²⁻ (d) CH ₃ COO ⁻		
6. Which of the following is not a protonic solvent		
(a) NH3 (b) HCOOH (c) C ₆ H ₆ (d) HF		
7. which of the following is not a product of auto ionisation of liq. NH3		
(a) N^{3-} (b) NH^{2-} (c) NH_2^{-} (d) N_2^{-}		
8. in which of the following reactions liq. NH3 itself acts as a reducing agent?		
(a) $(a) 2NH_3 + 3CuO \rightarrow N_2 + 3Cu + 3H_2O$ (b) $(b) S + 2Na \rightarrow Na_2S$ (in liq NH3) (c) $(c) 2K + NH_3 + N_2O \rightarrow KNH_2 + KOH + N_2$ (d) None of the above		
9. Which of the following belongs to the C_{3v} point group?		
(a) (a)SO ₃ (b) BBr ₃ (c) NH ₃ (d) AlCl ₃		
10. Which of the following does not contain a C ₃ axis?		
(a) POCl ₃ (b) [NH ₄] ⁺ (c) H ₃ O ⁺ (d) ClF ₃		
UNIT-V		
1. The coordination number of the transition element in [Pt Cl NO2 (NH3)4]2- is (a) 2 (b) 6 (c) 4 (d) 8		

- 2. For $K_2[(Cu(CN)_4]$ which one is correct
 - (a) Potassium tetra cyano recuperate
 - (b) Co-ordination number is 2
 - (c) The ligand is positively charged
 - (d) Central atom is present in the anionic sphere
- **3.** The location of transition elements is in between
 - (a) lanthanides & actinides
 - (b) S and P block elements
 - (c) Chalcogens and halogens
 - (d) D and F block elements
- 4. Compounds attracted by applied strong magnetic field are called
 - (a) Diamagnetic
 - (b) Paramagnetic
 - (c) Good conductor
 - (d) Ferromagnetic
- **5.** The correct electronic configuration of Cr is
 - (a) $[Ar]4s^23d^4$
 - (b) [Ar] $4s^23d^4$
 - (c) $[Ar]4s^03d^5$
 - (d) $[Ar]4s^13d^5$
- **6.** The number of dative bonds to the central metal ion is its
 - (a) oxidation number
 - (b) compound number
 - (c) coordination number
 - (d) Dative number
- 7. **The** oxidation state of transition elements is usually
 - (a) Variable
 - (b) Constant
 - (c) Single
 - (d) Infinite
- 8. Non-stoichiometric compounds of transition elements are called
 - (a) Hydrates
 - (b) Hydrides
 - (c) Binary compounds
 - (d) Interstitial compounds
- **9.** Which of the following can form a chelate
 - (a) Ammine
 - (b) Oxalate
 - (c) Carbonyl
 - (d) Cyano

- 10. The central atom along with ligands is called
 - (a) Complex ion
 - (b) Coordination sphere
 - (c) Ligand
 - (d) Complex compound
- eth the metal.

 At th