CBCS 2020 #### **CHEMISTRY** # MODEL QUESTION PAPER FOR ODD SEMESTER EXAMINATION 2020 MULTIPLE CHOICE (MCQ) #### **UNIT-I Chemical Bonding** - 1. Schottky defect in crystals is observed when - (a) Unequal number of cations and anions are missing from the lattice - (b) Equal number of cations and anions are missing from the lattice - (c) An ion leaves its normal site and occupies an interstitial site - (d) Density of the crystal is increased - 2. At zero kelvin, most the ionic crystal possess - (a) Frenkel defect - (b) Schottky defect - (c) Metal excess defect - (d) No defect - 3. In stoichiometric defects, the ratio of positive and negative ions as indicated by chemical formula of the chemical: - (a) Decreases - (b) Increases - (c) Remains same - (d) Cannot be predicted - 4. In the Schottky defect - (a) Cations are missing from the lattice sites and occupy the interstitial sites - (b) Equal number of cations and anions are missing - (c) Anions are missing and electrons are present in their place - (d) Equal number of extra cations and electrons are present in the interstitial sites - 5. As a result of Schottky defect - (a) There is no effect on density - (b) Density of the crystal increases - (c) Density of the crystal decreases - (d) Any of the above three can happen - 6. Schottky defect is likely to be found in: - (a) AgI - (b) NaCl - (c) ZnS - (d) ZnO - 7. Which of the following is correct? - (a) Schottky defect lowers the density - (b) Frenkel defect increases the dielectric constant of the crystal - (c) Stoichiometric defect makes the crystal good conductor - (d) All the three - 8. Frenkel defect is generally observed in - (a) AgBr - (b) AgI - (c) ZnS - (d) All of these - 9. Frenkel defect is found in crystals in which the radius ratio is: - (a) Low - (b) 1:3 - (c) 1:5 - (d) Slightly less than unity - 10. As a result of Frenkel defect, - (a) There is no effect on density - (b) There is no effect on conductivity - (c) There is no effect on dielectric constant - (d) There is no effect on all there of the above ### **UNIT-II Chemical Bonding-III** - 1. Which of the following theory provides good explanation about the paramagnetic behaviour of oxygen? - (a) resonance theory - (b) VSEPR theory - (c) Molecular Orbital Theory - (d) Valence Bond Theory - 2. Which of the following species is paramagnetic? - (a) O_2 - (b) N₂ - (c) H_2 - (d) O_2^- - 3. In which set o molecules are all the species paramagnetic - (a) B_2, O_2, N - (b) B_2 , O_2 , NO - (c) B_2, F_2, O_2 - (d) B_2 , O_2 , Li_2 - 4. In the formation of N₂ molecule according to Molecular Orbital Theory the outermost electron goes to (a) πMO (b) sp hybrid orbital (c) σ MO - 5. In the molecular orbital diagram of for O_2^+ ion the highest occupied orbital is (a) σ MO - (b) π MO - (c) π^* MO (d) 2p orbital - (d) σ^* MO - 6. The molecular orbital configuration of B₂ molecule is - (a) $(\sigma 1s)^2 (\sigma^*1s)^2 (\sigma 2s)^2 (\sigma^*2s)^2 (\pi 2p_x)^1 (\pi 2p_y)^1$ - (b) $(\sigma 1s)^2 (\sigma^*1s)^2 (\sigma 2s)^2 (\sigma^*2s)^2 (\sigma 2p_z)^2$ (c) $(\sigma 1s)^2 (\sigma^*1s)^2 (\sigma 2s)^2 (\sigma^*2s)^2 (\pi 2p_x)^2$ (d) $(\sigma 1s)^2 (\sigma^*1s)^2 (\sigma 2s)^2 (\sigma^*2s)^2 (\pi 2p_x)^1 (\pi 2p_y)^1$ - 7. How many bonds (bond order) does B_2 have? - (a) 0 - (b) 1 - (c) 2 - (d) 3 - 8. Which of the following molecular orbital has the lowest energy? - (a) $\sigma 2p_z$ - (b) $\sigma *2p_z$ - (c) $\pi * 2p_z$ - (d) $\pi * 2p_y$ - 9. For a homonuclear diatomic molecule the energy of σ 2s orbital is - (a) $> \sigma^* 2s$ orbital - (b) $< \sigma^* 2s$ orbital - (c) $> \sigma^*$ 1s orbital - (d) Both (b) and (c) are correct - 10. Which of the following statements is correct about N₂ molecule? - (a) It has a bond order of 3 - (b) The number of unpaired electrons present in it is zero and hence it is diamagnetic - (c) The order of filling of MOs is $\pi(2p_x) = \pi(2p_y)$, $\sigma(2p_z)$ - (d) All the above three statements are correct ## **UNIT-III** Chemistry of s and p block elements - 1. Caro's acid is a. H₂SO₄ b. H2SO₅ c. $H_2S_2O_6$ d. $H_2S_2O_8$ 2. Silicon carbide is used as a. a solvent b. a dehydrating agent c. an abrasive d. a catalyst 3. The number and type of bonds between two cabon atoms in CaC_2 are: a. only one π bond b. one σ and half π bond c. one σ and one π bond d. one σ and two π bond 4. Electrolysis of fused NaH liberates H₂ at: a. anode b. cathode c. cathode and anode both - d. none of these electrodes5. Which of the following is a pseudohalogen ? - a. IF₇ - b. ICl₂ - c. $(CN)_2$ - $d. I_3$ - 6. Which of the following is not a pseudohalide ion? - a. CNO - b. CN - c. SCN - d. S^{2-} - 7. Which of the following shows inert pair effect - a. Boron - b. Carbon - c. Silicon - d. Tin | | a. | methane | |--|----------|---| | | b. | ethane | | | c. | ethane | | | d. | ethyne | | 9. Which o | f th | e following carbide ion Is called methanide? | | | a. | C^{4-} | | | b. | C_2^{2-} | | | c. | (c)C ₃ ⁴⁻
C ⁴⁺ | | | d. | C 4+ | | 10. Example of covalent carbides are | | | | | a. | CaC ₂ and CH ₄ | | | | B ₄ C and Al ₄ C ₃ | | | c. | Al_4C_3 and Ag_2C_2 | | | d. | SiC and B ₄ C | | | e. | | | UNIT-IV | | | | 1. the symmetry point group of BF ₃ is: | | | | | a. | D2d | | | | D3h | | | c. | D2h | | | d. | C2V | | 2. which of the following can act both as Bronsted acid and Bronsted base? | | | | | a. | Na2CO3 | | | b. | OH- | | | c. | HCO ₃ | | | d. | NH3 | | 3. NH ₄ ⁺ is | 5 | | | 4 | | a conjugate acid | | 0.0 | a.
b. | a conjugate base | | | c. | neither an acid nor a base | | 14. | d. | both an acid and a base | | 4 . a compound having the formula , $NH_2 - CH_2 - COOH$ may behave : | | | | | a. | only as an acid | b. only as a base c. both as an acid nd a base d. (d)neither as an acid nor a base **8.** Calciumcarbide(CaC_2), when decomposed by water, produces: | 5. The strongest conjugate base is | | | |---|--|--| | (a) NO ₃ ⁻ (b) Cl ⁻ (c) SO ₄ ²⁻ (d) CH ₃ COO ⁻ | | | | 6. Which of the following is not a protonic solvent | | | | (a) NH3 (b) HCOOH (c) C ₆ H ₆ (d) HF | | | | 7. which of the following is not a product of auto ionisation of liq. NH3 | | | | (a) N^{3-}
(b) NH^{2-}
(c) NH_2^{-}
(d) N_2^{-} | | | | 8. in which of the following reactions liq. NH3 itself acts as a reducing agent? | | | | (a) $(a) 2NH_3 + 3CuO \rightarrow N_2 + 3Cu + 3H_2O$
(b) $(b) S + 2Na \rightarrow Na_2S$ (in liq NH3)
(c) $(c) 2K + NH_3 + N_2O \rightarrow KNH_2 + KOH + N_2$
(d) None of the above | | | | 9. Which of the following belongs to the C_{3v} point group? | | | | (a) (a)SO ₃ (b) BBr ₃ (c) NH ₃ (d) AlCl ₃ | | | | 10. Which of the following does not contain a C ₃ axis? | | | | (a) POCl ₃
(b) [NH ₄] ⁺
(c) H ₃ O ⁺
(d) ClF ₃ | | | | UNIT-V | | | | 1. The coordination number of the transition element in [Pt Cl NO2 (NH3)4]2- is (a) 2 (b) 6 (c) 4 (d) 8 | | | - 2. For $K_2[(Cu(CN)_4]$ which one is correct - (a) Potassium tetra cyano recuperate - (b) Co-ordination number is 2 - (c) The ligand is positively charged - (d) Central atom is present in the anionic sphere - **3.** The location of transition elements is in between - (a) lanthanides & actinides - (b) S and P block elements - (c) Chalcogens and halogens - (d) D and F block elements - 4. Compounds attracted by applied strong magnetic field are called - (a) Diamagnetic - (b) Paramagnetic - (c) Good conductor - (d) Ferromagnetic - **5.** The correct electronic configuration of Cr is - (a) $[Ar]4s^23d^4$ - (b) [Ar] $4s^23d^4$ - (c) $[Ar]4s^03d^5$ - (d) $[Ar]4s^13d^5$ - **6.** The number of dative bonds to the central metal ion is its - (a) oxidation number - (b) compound number - (c) coordination number - (d) Dative number - 7. **The** oxidation state of transition elements is usually - (a) Variable - (b) Constant - (c) Single - (d) Infinite - 8. Non-stoichiometric compounds of transition elements are called - (a) Hydrates - (b) Hydrides - (c) Binary compounds - (d) Interstitial compounds - **9.** Which of the following can form a chelate - (a) Ammine - (b) Oxalate - (c) Carbonyl - (d) Cyano - 10. The central atom along with ligands is called - (a) Complex ion - (b) Coordination sphere - (c) Ligand - (d) Complex compound - eth the metal. At th